Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 
Startseite    Anmelden     
Logout in [min] [minutetext]

Kombinatorisch nichtlokale Feldtheorie - Einzelansicht

Grunddaten
Veranstaltungsart Vorlesung Langtext
Veranstaltungsnummer 100244 Kurztext
Semester WiSe 2022/23 SWS 2
Erwartete Teilnehmer/-innen 20 Studienjahr
Max. Teilnehmer/-innen
Credits Belegung Belegpflicht
Hyperlink
Sprache englisch


Zugeordnete Person
Zugeordnete Person Zuständigkeit
Thürigen, Johannes, Dr. verantwort
Studiengänge
Abschluss - Studiengang Sem ECTS Bereich Teilgebiet
Master - Mathematics (88 F23 20) -
Master - Mathematik (88 105 10) -
Promotion (Dr. rer. nat.) - Mathematik (6D 105 0) -
Master - Mathematik (88 105 13) -
Zuordnung zu Einrichtungen
Fachbereich 10 Mathematik und Informatik
Inhalt
Kommentar

Quantum field theory is the framework describing the known elementary particles and their interactions. Though very successful as a tool for calculating the quantities observed in experiment, mathematically the theory is incomplete in many ways. In turn, this has led to a very fruitful interaction between physics and mathematics as quantum field theory motivates interesting new mathematical questions together with heuristic ideas for their solution as well as mathematics providing a rigorous understanding why the field-theoric toolbox works. Combinatorially non-local field theory is a particularly interesting example of this interaction. Such non-local interactions give rise to a perturbative expansion in graphs encoding topological manifolds. This might be the crucial additional structure to define perturbative field theory in a rigorous way, but these specific combinatorics also relate the theory to random geometries and possibly quantum gravity.
In this lecture I will give a systematic introduction to field theories with combinatorially non-local interactions from their diagrammatic combinatorics and perturbative renormalization of amplitudes to non-perturbative effects and properties of their renormalization group flow.

Topics:

  • Large-N expansions in local QFT
  • Matrix fields from non-commutativity
  • Generalization to tensor fields
  • Feynman graphs of non-local fields
  • Perturbative renormalization
  • Renormalizable tensorial theories
  • Renormalization Hopf algebra
  • Dyson-Schwinger equations
  • Renormalization group flow
Literatur

R. Gurau: Random Tensors
B. Eynard: Counting Surfaces
S. Carrozza: Flowing in group field space: a review

Voraussetzungen

Basics of Quantum field theory


Strukturbaum
Keine Einordnung ins Vorlesungsverzeichnis vorhanden. Veranstaltung ist aus dem Semester WiSe 2022/23 , Aktuelles Semester: SoSe 2023