Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 
  1. WiSe 2022/23
  2. Hilfe
  3. Sitemap
Switch to english language
Startseite    Anmelden     
Logout in [min] [minutetext]

Strukturbaum
Keine Einordnung ins Vorlesungsverzeichnis vorhanden. Veranstaltung ist aus dem Semester SoSe 2022 , Aktuelles Semester: WiSe 2022/23
Numerical Methods for Partial Differential Equations II    Sprache: englisch    Belegpflicht
Nr.:  108411     Vorlesung     SoSe 2022     4 SWS     https://sso.uni-muenster.de/LearnWeb/learnweb2/course/view.php?id=59681
   Fachbereich: Fachbereich 10 Mathematik und Informatik    
 
      Master/Mathematics, PO 20 (88F23)
  Master/Mathematik, PO 13 (88105)
  Master/Mathematik, PO 10 (88105)
   Zugeordnete Lehrperson:   Rave verantwort
 
 
   Termin: Dienstag   12:00  -  14:00    woch
Beginn : 05.04.2022    Ende : 05.07.2022
      Raum :   M B 6 (M 6)   Einsteinstr. 64  
  Freitag   12:00  -  14:00    woch
Beginn : 08.04.2022    Ende : 08.07.2022
      Raum :   M B 6 (M 6)   Einsteinstr. 64  
 
 
   Kommentar:

Many processes in science and engineering are governed by conservation laws. These conservation laws state that the temporal change of a conserved quantity in a given volume is equal to the integral of the flux of this quantity across the volume's boundary. When the flux is a function of the conserved quantities, these conservation laws lead to a system of first-order partial differential equations. Some examples among many others are the Euler equations in fluid dynamics or the modelling of traffic flow.

In this lecture we will be concerned with the analysis and numerical approximation of first-order partial differential equations arising from conservation laws. In particular we will study so-called Finite Volume methods, which are based on a discrete formulation of the conservation laws on a finite set of control volumes covering the computational domain. In the accompanying exercises, in addition to deepening our theoretical knowledge, we will gain practical experience with the implementation of finite volume schemes using the Python programming language.

 
   Literatur:
  • T. Barth und M. Ohlberger. Finite volume methods: foundation and analysis. In T.J.R. Hughes E. Stein, R. de Borst, editor, Encyclopedia of Computational Mechanics , volume 1, chapter 15. John Wiley & Sons, Ltd, 2004.
  • R. Eymard, T. Galluoët und R. Herbin. Finite volume methods. In Handbook of numerical analysis, Vol. VII , pages 713-1020. North-Holland, Amsterdam, 2000.
  • D. Kröner. Numerical schemes for conservation laws . Wiley-Teubner Series Advances in Numerical Mathematics. John Wiley & Sons Ltd., Chichester, 1997.
 
   Voraussetzungen:

Some familiarity with partial differential equations and their numerical approximation (e.g. Finite Element method for elliptic equations) is helpful but not required. Basic knowledge of the Python programming language is required to follow the programming exercises.